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Abstract—Cyber-Physical Systems (CPS), which integrate con-
trols, computing and physical processes are critical infrastruc-
tures of any country. They are becoming more vulnerable to
cyber attacks due to an increase in computing and network
facilities. The increase of monitoring network protocols increases
the chances of being attacked. Once an attacker is able to cross
the network intrusion detection mechanisms, he can affect the
physical operations of the system which may lead to physical
damages of components and/or a disaster. Some researchers used
constraints of physical processes known as invariants to monitor
the system in order to detect cyber attacks or failures. How-
ever, invariants generation is lacking in automation. This paper
presents a novel method to identify invariants automatically using
association rules mining. Through this technique, we show that it
is possible to generate a number of invariants that are sometimes
hidden from the design layout. Our preliminary study on a secure
water treatment plant suggests that this approach is promising.

Index Terms—Cyber Physical System, Association Rules Min-
ing, Cyber Security, Attack Detection, Artificial Intelligence,
cyber attacks, Secure Water Treatment testbed.

I. INTRODUCTION

Cyber Physical Systems (CPS) are built from, and depend
upon, the integration of computational algorithms and physical
components. Such systems include large public infrastructure
such as water treatment, oil and gas, and transportation. Rapid
technology development of remote monitoring and controlling
of the CPS opens vulnerabilities to attackers. Examples of
cyber attacks [7], [12], [15] illustrate the importance of
security in critical infrastructures. Given the potential and
rising attempts of cyber attacks, it is necessary to design
mechanisms for defending against such attacks.

Traditional intrusion detection systems use network traffic
to monitor the CPS. However, once the attacker has breached
the network layer, he is able to inject different attacks on the
sensor and actuator communication channel [3], [2]. Monitor-
ing physical behavior is necessary as it is the last layer of
defence in critical infrastructures [4], [1]. In a water treatment
plant, Adepu et al. [2] manually derived the physical invariants
from the system design and used it for monitoring the plant.
A process invariant, or simply an invariant, is a mathematical
relationship among physical and/or chemical properties of the
process controlled by the PLCs in a CPS [4]. In this paper,
we derive these invariants using a data driven approach from a
dataset [9] which is collected in an operational water treatment

plant [14]. In essence, we use the concept of association rule
mining to derive the invariants based on the sensor and actuator
data of a Secure Water Treatment (SWaT) plant.

Related work: The literature related to attack detection in
CPS can be divided into three categories: signature based,
specification based, and behaviour based [13] techniques. Sig-
nature based approaches look for known patterns of the
attacks [8]. However, this technique is not capable of detecting
zero day attacks. Specification based approaches model the
system behaviour using formal models which are mathematical
models [11], [4]. It is hard to capture all system behaviour
exactly using specification based approaches because, one
needs human effort and his domain knowledge. In addition,
hardware faults due to aging cannot be handled by specifica-
tion based methods. In order to overcome these problems, data
driven approaches like behavior based methods can be utilised.
Behaviour based methods monitor the actual behaviour of the
physical systems using the data obtained from the system [10].
This paper focuses on using a behaviour based approach to
identify invariants.

Objective of the study: The study reported here was under-
taken with the long term goal of developing robust defense
mechanisms for CPS. As a short term goal, we automatically
generated the invariants to detect cyber attacks [4] to support
the work of Adepu et al. [4] . This study was performed on a
SWaT testbed [14]. The results obtained and the methodology
used in this study could serve as a basis for developing further
investigation of approach to detect attacks and failures.

Research questions: Focus of the study described here is on
the following questions where SWaT [14] is considered as a
CPS:

RQ1: What is the procedure to automate the generation
of invariants in a CPS?

RQ2: How do we verify the accuracy of the invariants
generated?

This paper focuses on research questions RQ1 and RQ2 in
detail.

The contributions of this paper is to present a methodology
to generate invariants automatically. The rest of the paper is
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Fig. 1: Water treatment in SWaT: P1 though P6 indicate the six stages in the treatment process. Arrows denote the flow of water and of
chemicals at the dosing station.

organised as follows: Section II discusses the SWaT dataset.
The proposed method used for invariants generation is dis-
cussed in Section III. In section IV, we present the results of
the experiments and conclude the paper in section V.

II. ARCHITECTURE OF THE SWAT TESTBED

SWaT [14] is a fully operational scaled down version of
a water treatment plant. It is designed and built for research
on the design of secure cyber physical systems. This testbed
has a small footprint capable of producing 5 gallons/minute
of doubly filtered water and mimics large modern plants for
water treatment such as those found in modern cities.

Water treatment process: As illustrated in Figure 1, the
treatment process used in SWaT consists of six distinct sub-
processes termed P1 through P6. Each sub-process, referred
to as a stage, is controlled by an independent Programmable
Logic Controller (PLC). Thus, six PLCs work in concert to
control the entire treatment process. Control actions are based
on the system state estimated by the PLCs using data from
sensors.

Stage P1 controls the inflow of water to be treated by
the opening or closing of a motorized valve. State P2 is a
chemical dosing station, while stage P3 is a Ultra Filtration
(UF) process. A UF feed pump in P3 sends water via the UF
unit to Reverse Osmosis (RO) feed water tank in stage P4.
Here an RO feed pump sends water through an Ultraviolet
dechlorination unit controlled by a PLC in stage P4. In stage
P5, the dechlorinated water is passed through a 2-stage RO

filtration unit. The filtered water from the RO unit is stored
in the permeate tank and the rejected water is stored in the
UF backwash tank. Stage P6 controls the cleaning of the
membranes in the UF unit by turning on or off .

The communication infrastructure of the SWaT is presented
in [3], it also describes what kind of attacks are possible in a
water treatment system and the impact of the attacks.

A. SWaT Dataset

In this experiment, we used the SWaT Dataset [9]. The
dataset was obtained by running SWaT non-stop from its
empty state to a fully operational state for a total of 11-days.
During this period, the first seven days consisted of normal
operation, i.e. without any attacks. During the remaining
days, 36 various cyber and physical attacks were launched
on the testbed while data collection continued. The dataset
[9] contains all the sensors and actuator values as well as
the network traffic of the testbed over the said duration. The
data which is collected from historian is almost 3 million lines
which includes 53 attributes, we used complete data set in this
paper. Till date, this is the most updated and complex open
source dataset.

III. METHODOLOGY

To overcome the limitation of manually identifying invari-
ants [4], we applied the association rules mining algorithm to
the SWaT dataset. Essentially, this is a data mining process
used to find rules that may govern associations and causal



TABLE I: Invariants based on design structure of the system

S.No Description
SD1 MV101 is Open,FIT101 >delta
SD2 LIT101 is Low,MV101 is Open
SD3 LIT101 is High,MV101 is Close
SD4 LIT101 is LL (LowLow) P101 or P102 are Off
SD5 LIT301 is Low,P101 or P102 is On
SD6 LIT301 is High,P101 or P102 is Off

objects between sets of items [5]. Association rule mining
works based on support and confidence.

Before explaining the general approach towards such data
mining, there are two main terms that the reader needs to be
associated with; Minsup,which indicates the minimum support
i.e. the minimum number of times the items are found in the
dataset and Confidence value, which shows the percentage of
how many times a certain rule is found to be true.

A common strategy adopted by many association rules
mining algorithms [6] to decompose the problem into two
major sub tasks:

• Frequent Itemset Generation, whose objective is to find
all the itemsets that satisfy the minsup threshold. These
itemsets are called frequent itemsets.

• Rule Generation, whose objective is to extract all the
high-confidence rules from the frequent itemsets found
in the previous step.

Prior work [4] in identifying invariants were performed by
applying the law of physics on the system design structure.
However, if we applied an associative rules mining algorithm,
we can identify various hidden relationships between different
stages of a system that would have been tedious to find out if
done manually. In order to see whether these rules are accurate
enough to be set as conditions for a systems normal behaviour,
there is a need to check if most of the constrains can be backed
by Physics. If this succeeds, we can prove that a plausible
way to detect cyber attack is through constraints generated by
Association Rules Mining.

A. Procedure

Using the SWaT dataset[9], we generated constrains using
the Apriori Algorithm. The Apriori Algorithm is an influential
algorithm for mining frequent itemsets for boolean association
rules. Figure ?? provides a brief visual representation of how
the algorithm works. We refer the reader to [16] to understand
Apriori more in detail.

As the the data consists of numerical values with some up
to 9 decimal places, setting such values as itemsets are not
only inaccurate but also difficult to understand as we did not
know which number represents what sensor. In order to fit the
data to the Apriori Algorithm accurately, we had to modify the
dataset in a logical manner. We set ranges for sensor values
such as High, Low, On and Off based on the current operation
standard of the CPS in order to get more realistic constraints.
i.e. to obtain a High range for sensor LIT101, the data must

Algorithm 1: Pseudo code for Apriori Algorithm[16]

Input:
D: transaction database;
Min sup: the minimum support threshold
Output: frequent itemsets

Description:
1: L1= find frequent 1-itemsets(DB);
2: for (k=2; Lk�1 = '; k ++) {
3: Ck= Apriori gen(Lk�1);
4: for each transaction t 2 DB { //scan DB for counts
5: Ct = subset(Ck, t); //get the subsets of t that are

candidates
6: for each candidate c 2 Ct

7: c.count++;
8: }
9: Lk = {c 2 Ck|c.count � min sup}

10: }
11: return L =

S
k Lk;

12: Procedure Apriori gen(Lk�1: frequent(k � 1)-itemsets)

fall within 500 and 1000. We performed this procedure for all
the sensor and actuators in SWaT.

IV. RESULTS

After implementing the algorithm, we obtained about 11500
rules with all confidence values for 51 sensors. However, since
we cannot discuss the effectiveness of each constrain due
to space constraints, we are focusing on those sensors that
affect P1 based on the invariants formed using the systems
design structure. Tables I & II illustrates the invariants present
in P1. We then compared the physical invariants with the
automatically generated invariants (as shown in Table II) to
see whether the generated constraints are valid.

In Table I, it is mentioned that when MV101 is Open, the
value of FIT101 will be high. As illustrated in Table 2, the
first row shows that this is 100% accurate. In order to check
if the reverse is true, we wanted to see the confidence value
when MV101 is Close and FIT101 is High. It came as 0.49%.
This shows that this constraint is only seen in 0.49% of those
itemsets when MV101 is Close. In Table I, this constraint is
not shown. This shows that the confidence value for this rule
is true and accurate as this value most probably came when
the system was in a transition period.



TABLE II: Rules generated through apriori algorithm

Sensor 1 Sensor 2 Confidence Value (%)
MV101-Open FIT101-H 100
MV101-Close FTI101-H 0.49
MV101-Open FIT101-L 0.012
MV101-Close FIT101-L 99.5
LIT101-LL P101-Off 100
LIT301-L P101-On 95.7

Another instance can be taken where MV101 remains close.
In the 4th row in Table II, it is shown that FIT101s value will
most likely be Low. Similarly, if MV101 is Open, there is
a negligible chance for FIT101 to be Low. This is evident
based on the confidence value shown at 0.012%. The last row
in Table II includes a sensor that does not primarily belong
in P1 but affects the process as it takes in recycled water.
According to the invariants set shown in Table I, LIT301-Low
will result in P101-On. In Table II, this is shown to be true
95.7% of the time. Therefore, there is a match or coherence
in the confidence values given for rules that have one sensor
value controlled.

A. Limitations

Currently, this technique is limited to only pair wise sensors
and actuators. In a CPS, all the sensors and actuators across
multiple processes work in tandem. For example, P3 relies on
P1 for water. This means that the actuators (P101 or P102) in
P1 will be turned on. This action causes MV301 in P3 to be
turned on. All these behavior is determined by the water level
sensor LIT301 in P3. In this scenario, at least 3 sensors and
actuators are working together to perform a request. Hence,
for more accurate invariants generation, the technique adopted
must be capable of deriving valid constrains across multiple
sensors and actuators.

Another limitation of approach is to facing few false posi-
tives, false negatives. It is happening because at one state the
invariant is true and same invariant is not true in other state.
This paper is not checking the invariant based on state of
system. We are interested to consider this aspect in the future
work.

V. CONCLUSION

This paper presents invariants generation in cyber physical
systems that is helpful to detect attacks and failures in CPS. We
used association rule mining to generate invariants from a CPS
dataset. As future works, we will overcome the limitations by
focusing on identifying invariants across multiple processes.
We will also include time as a bias to enhance the invariants
generated.
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